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Abstract. 

The aim of this paper is to study a mathematical problem, related to a general voting scenario, in 

which a group of voters elects a committee from a pool of possible candidates. Every voter can vote 

positively or negatively for every candidate. The problem is to calculate the minimum number of positive 

votes, that each voter must make in order to elect at least a certain predefined lower bound of committee 

members. The authors have studied this problem in a previous paper, in which the committee members 

are elected by simple majority. The present paper generalises the result to other types of majorities, such 

as qualified majorities or more general parameter-based majorities. In the case when the group of voters is 

larger than the pool of candidates, a very good approximation of the answer is obtained, which does not 

depend on the total number of voters. The authors also analyze the error of this approximation, which 

happens to be at most one vote in absolute value. 
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Introduction 

The research in this paper is based on the following problem. The general assembly of a 

university consists of 135 members. The assembly must fill in 24 vacant places in the academic 

council by an election procedure. There are 80 candidates for the places. Every member of the 

general assembly may vote for or against every candidate. A candidate is successfully chosen if 

he or she receives a simple majority of votes (that is at least 68 votes) in the election. We posed 

the following  question: 

How many positive votes must each member of the general assembly make in such a way 

that all vacant places in the academic council are surely filled in after one election procedure? 

Intuitively, it is clear that such a number of positive votes exists. The authors have already 

obtained in [1] the answer to the question for simple majority voting. The present paper is 

concerned with exact and approximate estimations of the number from the question in other 

parameter-based voting scenarios. 
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An exact general formula 

We consider a general election scenario in which a group of voters elects a commission, 

consisting of certain number of members, from a pool of possible candidates. Every voter must 

give a positive or a negative vote for every candidate. 

Let N  be the number of voters. Let the election sheet contain m  candidates. In this section 

a candidate is chosen for a member if he or she receives at least p  positive votes, where p N . 

Let k  be a positive integer, such that k m and let us denote 

.( 1) ( 1).( 1) 1m p k N p
I

N

     
  . 

Theorem. A sufficient condition for the successful election of at least k  members of the 

commission is that every voter gives a positive vote for at least *I  candidates, where *I  is the 

least positive integer, such that *I I . 

Proof. We assume the opposite. This means that every voter has given at least *I  positive 

votes, but the number of successfully chosen members is l , where 1l k  . 

We partition the positive votes of all voters in two non-intersecting classes: the first class 

contains the positive votes for candidates, which are chosen for members and the second class 

contains the positive votes for all the other non-chosen candidates. 

The number of the chosen members is l , therefore the first class contains at most .l N  

positive votes. The number of the non-chosen candidates is m l . Each one of them has received 

at most 1p  positive votes. Therefore, the second class contains at most ( ).( 1)m l p   positive 

votes. 

So the total number of positive votes does not exceed 

. ( ).( 1) .( 1) .( 1)l N m l p m p l N p         

.( 1) ( 1).( 1) . 1,m p k N p I N         

since  1l k   and 1 0N p   . On the other hand, every voter has given at least *I  positive 

votes, so the total number of positive votes is at least *. .I N I N . We reached a contradiction. 

Therefore at least k  members has been successfully chosen.    Q.E.D. 

From the proof it is clear that the number *I  is the least possible for the given k . It is easy 

to construct a particular voting, in which 1k   members are chosen with full majority (that is 

with N  positive votes), each of the remaining non-chosen candidates receives at most 1p  
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positive votes and every voter gives exactly * 1I   positive votes. 

The proof of the theorem is closely connected with the pigeonhole principle. There is a 

threshold for the number of positive votes, such that exactly one more positive vote guarantees 

successful election. 

In the example from the introduction we have 135, 24, 80, 68N k m p    . Therefore, 

1385
51.2963

27
I    and it is sufficient that every voter gives at least * 52I   positive votes. 

 

An approximate general formula, which does not depend on the total number of voters 

From now on we assume the inequality m N . This is a natural assumption and it is true 

whenever the pool of candidates is part of the group of voters. 

It is often the case that the number p  of needed positive votes for successful election is a 

given portion of the number N  of all possible votes. 

For the purpose of this section, let   be a real number, such that (0,1) . We assume 

that p is the least positive integer, such that .p N . 

For example, 
1

2
   for a simple majority voting and 

2

3
   for a classified majority 

voting. 

Let us denote . ( 1).(1 ).A m k      Thus A  depends on , ,k m  , but does not depend on 

N . 

Theorem. Let *A  be the least positive integer, such that *A A . Then * * 1A I  . 

Proof. We have 1 .p N p   by the minimality of p , which gives . . 1N p N    . 

Using these two inequalities we obtain  

1.( . 1) ( 1).( . 1 1) 1 mm N k N N
I A

N N

        
    . 

Therefore 
1

1
m

A I
N


   . We also obtain  

. . ( 1).( . 1) 1 km N k N N
I A

N N

     
   , 

hence 1
k

I A
N

   . We have used that k m N  . Finally, 
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1 1 * 1 * * 1A I A I I A I           

and similarly 1I A   implies * * 1I A  . Therefore, * * 1A I  .    Q.E.D. 

 

As a corollary we obtain that * 1A   positive votes from every voter are sufficient, but this 

is an upper bound, which sometimes is greater than the exact solution *I . The last two sections 

give the precise relation between *I  and *A  for the cases of simple and classified majority 

votings. 

 

Error estimation for simple majority voting 

In this section we assume 
1

2
   and therefore 

1

2

m k
A

 
  . 

Results from [1] easily imply that * * 1I A   in case N  is even and m k  is odd and 

* *I A  in all other cases. For simple majority it never happens that * * 1I A  . 

In the example from the introduction 51.5A  and N  is odd, therefore * * 52I A  . 

 

Error estimation for classified majority voting 

In this section we assume 
2

3
   and therefore 

2 1

3

m k
A

 
  . 

We note that A  is an integer if and only if 2 (mod 3)m k  . 

In the case 0 (mod 3)m k  we have that 
1

3
A  is an integer, hence 

1
*

3
A A  .  

In the case 1(mod 3)m k   we have that 
2

3
A  is an integer, hence 

2
*

3
A A  . 

We consider three cases for the remainder of N  modulo 3. 

Case  1. 0 (mod 3)N  . Let 3.N x , 1x  . Then 2 1p x  . We have 

.2 ( 1). 1 1

3. 3.

m x k x
I A

x x

  
   . 

 Case 1.1. A  is an integer ( 2 (mod 3)m k  ). 
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 We obtain *A A  and * * 1I A  , since 
1

* * 1
3

A I A A     . 

 Case 1.2. A  is not an integer. Then 
1

*
3

A A   or 
2

*
3

A A  . But 
1

3
A I A     

 and therefore * 1 *A A I A    . Thus * *I A  in this case. 

Case  2. 1(mod 3)N  . Let 3. 1N x  , 0x  . Then 2 1p x  . We have 

.2 ( 1).( 1) 1

3. 1

m x k x
I

x

   



 and 

2.( ) 1

3.

m k
A I

N

 
  . 

 Case 2.1. k m . Then 
1

3.
I A

N
  . Of course, A  is not an integer and by the same 

 argument as in Case 1.2. we obtain * *I A . 

 Case 2.2. k m . Since 1 m k m N    , we obtain 
1 2. 1 2

3. 3. 3

N
A I

N N


    . 

  Case 2.2.1. A  is an integer ( 2 (mod 3)m k  ). Then *A A  and since   

  
2

* 1 *
3

A A I A A      , we obtain * *I A . 

  Case 2.2.2. 0 (mod 3)m k  . This means that 
1

*
3

A A  and we have 

  
2

* 1 *
3

A A I A A      . Therefore, * *I A . 

  Case 2.2.3. 1(mod 3)m k  . This means that 
2

*
3

A A  . 

   Case 2.2.3.1. 
1

2

N
m k


  . Then 

1

3
A I  . We have 

   
1

* 1 *
3

A A I A A      . Thus * *I A . 

   Case 2.2.3.2. 
1

2

N
m k


  . Then 

1 2

33
A I   . We obtain 

   
4 1

* 2 * 1
3 3

A A I A A        . Therefore * * 1I A  . 

Case 3. 2 (mod 3)N  . Let 3. 2N x  , 0x  . Then 2 2p x  . We have 

.(2 1) ( 1).( 1) 1

3. 2

m x k x
I

x

    



 and 

2

3.

m k
A I

N

 
  . 
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 Case 3.1. k m . Then 
2

3.
I A

N
  . From 2N   it follows 

1

3
A I A   . 

 Since A  is not an integer, * *I A  as in Case 1.2. 

 Case 3.2. 1k m  . Then 
1

3.
I A

N
  . Again A  is not an integer and * *I A  as in the 

 previous Case 3.1. 

 Case 3.3. 2k m  . Then I A  and obviously * *I A . 

 Case 3.4. 2k m  . Since 1 2m k m N     , we obtain 
1 1

3. 3
A I

N
   . 

  Case 3.4.1. A  is an integer. Then *A A  and since 
1

* 1 *
3

A A I A A      , 

  we obtain * *I A . 

  Case 3.4.2. A  is not an integer. Then 
1

*
3

A A   or 
2

*
3

A A  . But  

  
1

3
A I A   , therefore 

1
* 1 *

3
A A I A A      . Thus * *I A . 

 

More compactly, the analysis shows that: 

when 0 (mod 3)N   and 2 (mod 3)m k  , we have * * 1I A  , 

when 1(mod 3)N  , 1(mod 3)m k   and 
1

2

N
m k


  , we have * * 1I A  , 

in all other cases we have * *I A . 

 

Conclusion 

A similar analysis for the relation between *I  and *A  can be done for many other rational 

values of  . What is more important, the formulated problem is general enough, so that it can be 

considered with more complicated voting systems. In a future research, the authors plan to apply 

the ideas from this paper, particularly those connected with the pigeonhole principle, for the 

voting scenarios, described in [2,3] and other extensive sources on election mathematics. 
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