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Abstract 

Pain is a symptom usually associated with the development of diseases, but it is always a personal 
experience influenced by contextual, psychological, and social factors. The processing and interpretation of pain 
include a complicated brain network consisting variety of subordinated structures. At each level of this neural 
network, numerous cellular processes contribute to the modulation of pain sensitivity. 

It has been found that the renin-angiotensin system (RAS) plays a significant role in controlling pain under 
normal and pathological conditions. Recently, new components of the RAS were discovered characterizing two 
interacting and balancing arms.   The classical arm includes the angiotensin-converting enzyme (ACE), the 
octapeptide angiotensin II (Ang-II), its primary receptor AT1, and the less common AT2 receptor. The alternative 
arm includes ACE2, the heptapeptide angiotensin 1-7, and its primary receptor Mas-1. RAS has long been known 
as a homeostasis system primarily responsible for maintaining the physiological balance between the 
cardiovascular and renal systems. Accumulating data however enlarged scientific knowledge on the role of RAS 
in control of brain functions and modulation of pain susceptibility. Scientific evidence indicates a differential 
involvement of angiotensin receptors in the modulation of pain transmission and suppression. Some data seems 
contradictory, but a thorough analysis emphasized a specific role of receptor distribution and their selective 
activation/inhibition on the final effect of pain sensitivity. This review summarizes the available literature on the 
topic and characterizes some perspectives for further research. 
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Introduction – pain definition and function 

Pain is the most common clinical symptom associated with the development of many diseases, in 
which a part of the somatosensory system is activated. Still, it is always a personal experience influenced 
by contextual, psychological, and social factors [1,2]. According to the recently revised definition by the 
International Association for the Study of Pain, pain is accepted as: “An unpleasant sensory and 
emotional experience associated with, or resembling that associated with actual or potential tissue 
damage” [3]. In addition, pain can be described in terms of three components - sensory, emotional, and 
cognitive - reflected in painful stimuli's transmission and modulation mechanisms [4]. The sensory 
process that conveys noxious signals to the central nervous system (CNS) and triggers pain is known as 
nociception. Pain usually serves an adaptive role, but may adversely affect social, and psychological 
well-being. Depending on the duration of the stimulus and plastic changes in the information processing 
system, acute pain can differ from chronic pain. Acute pain has a protective function detecting harmful 
stimuli and preventing body damage. Chronic pain, however, persists long after the nociceptive stimulus 
and activates neuroplasticity processes, leading to the experience of exacerbated responses to both 
painful (hyperalgesia) and non-painful stimuli (allodynia) [5]. Chronic pain is considered a disease in 
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itself, which often is accompanied by emotional and cognitive impairments, leading to the development 
of anxiety and depression. 

 
Mechanisms of nociception 

Pain perception begins with the stimulation of specific receptors, nociceptors, the first-order 
sensory neurons classified as either unmyelinated C- or lightly myelinated A-delta fibers situated 
throughout the body: the skin, joints, viscera, and muscles [6,7,8,9]. High-threshold mechanical and heat 
stimuli, and a vast variety of chemical substances such as acetylcholine, adenosine triphosphate (ATP), 
substance P, potassium, serotonin, lactic acid, arachidonic acid, histamine, nerve growth factor, calcitonin 
gene-related peptide (CGRP), etc., can activate nociceptors [10,11]. Three transient receptor potential 
(TRP) cation channels, TRPV1, TRPM3, and TRPA1, were identified as chemical- and heat-induced pain 
sensors in nociceptor neurons. TRPV1 which can integrate diverse noxious stimuli, is expressed in both 
peptidergic and nonpeptidergic nociceptive fibers [12]. The complexity and multimodality of nociceptors 
require fine control to ensure the correct interpretation and prevent over-strengthening of the non-
adaptable sensory reaction. The encoded nociceptive information is conveyed in the cell bodies in the 
dorsal root ganglion (DRG), and Rexed layer I and substantia gelatinosa of Rexed layer II of the dorsal 
horn of the spinal cord if the stimulus comes from the body, or the trigeminal ganglia (TG), if the stimulus 
is from the face. Nociceptive neurons make connections directly, or indirectly, through spinal 
interneurons, with second-order sensory neurons in the spinal cord which are activated through the 
released neurotransmitters, including glutamate, substance P (SP), CGRP, and others [6,7,8]. 
Interneurons, which can be referred to as "local circuit neurons", can be divided into two main classes: 
excitatory (glutamatergic) and inhibitory (GABA and/or glycineеrgic) [13]. 

 
Pain transmission 

The spinal cord's nociceptive neurons form projections comprising the three major ascending pain 
pathways: the neospinothalamic, paleospinothalamic, and archispinothalamic tracts.  

The neospinothalamic tract begins with second-order nociceptive neurons located in Rexed layer 
I. They decussate and ascend via the lateral spinothalamic tract to third-order neurons in the thalamus 
but with collaterals to autonomic homeostatic brainstem noradrenergic cell groups A1–A2 and A5–A7, 
the parabrachial nucleus (PB), and the periaqueductal gray (PAG). From the ventral posterolateral 
nucleus (VPL) and the ventral posterior inferior nucleus (VPI) of the thalamus, nociceptive information 
projects to the somatotopically organized primary somatosensory cortex (S1) responsible for the 
immediate awareness and the exact location of the painful stimulus. Nociceptive information from the 
TG projects to the ventral posteromedial nucleus (VPM), parafascicular nucleus (PF), and the 
centromedian nucleus (CM) then the information further projects to SI [4]. 

The paleospinothalamic tract starts from Rexed layer II, in which fibres have diffuse projections to 
Rexed layers IV through VIII. They ascent anteriorly and project bilaterally into the midbrain reticular 
formation (RF), PAG, tectum, PF, and CM. The neurons in the two latter thalamic structures send 
projections to the somatosensory cortex, brainstem nuclei, and limbic areas (cingulate gyrus, insulate 
cortex). The interplay between the limbic structures, hypothalamus, and brainstem nuclei mediates 
emotional and visceral responses to pain. 

The archispinothalamic tract starts with second-order neurons found in Rexed layer II (substantia 
gelatinosa), which project to neurons in Rexed layers IV and VII. Diffuse projections from the latter 2 
layers are sent to the RF and the PAG, then to the hypothalamus, limbic system nuclei, PF, and CM 
nucleus. This tract also mediates visceral and emotional reactions to pain [4]. 
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Pain modulations, processing, and interpretations  

There are many different classifications of pain based on various criteria such as etiology, intensity, 
duration, and pathophysiological mechanisms. Based on the latter, there are three types of pain: 
nociceptive, neuropathic, and nociplastic [14,15,16]. Pain accumulates the subjective expression of 
sensory/discriminative and motivational/affective experiences. Its interpretation may result from the 
interplay between aversive and rewarding processes that elicit specific motivated behavioral responses. 
For example, acute pain leads to an adaptive escape/avoidance reflex, and relief of acute pain is rewarding 
in facilitating learning to anticipate danger. 

Under normal pain transmission, GABAergic neurons within the PAG have tonic activity, however, 
upon opioidergic activation, GABA release is inhibited which results in the disinhibition of rostral 
ventromedial medulla (RVM) off-cells and on-cells [17]. The endogenous opioidergic system is one of 
the well-known mechanisms supporting this fine-tuning. Still, the role of other modulatory systems 
including some neurohypophyseal hormones has recently been revealed [18]. Endogenous opioids bind 
to four major types of G protein-coupled receptors widely distributed in the pain modulatory network, 
which includes the ventrolateral PAG, RVM, and dorsal horn of the spinal cord [18]. 

Serotoninergic neurons in the nucleus raphe magnus (NRM) have descending pathways in the 
dorsal horn of the spinal cord exerting direct or indirect inhibitory control on pain transmission and 
participating in peripheral and central sensitization processes. [19]. 

The mesolimbic dopamine system in the ventral tegmental area (VTA) and its projections to the 
medial prefrontal cortex (mPFC) and nucleus accumbens (NAc) have recently focused attention as a hub 
for both the control of motivation, reward, and aversion and the development of comorbid chronic pain 
depression [20]. The VTA receives input from several brain regions, including those involved in 
nociceptive information processing (e.g., the parabrachial nucleus, PAG, central amygdala, and lateral 
habenula) [21]. At each level of this neural network, numerous cellular processes contribute to the 
modulation of pain sensitivity. 
 
Renin-angiotensin system 

The Renin-Angiotensin-Aldosterone System (RAAS) is a cascade including three significant 
components: renin, angiotensin II (Ang II), and aldosterone which plays a major role in the regulation of 
blood pressure, fluid balance, and electrolyte homeostasis [22,23,24]. The discovery of new peptides in 
the last few decades has increased our understanding and the complexity of the RAS [25]. These peptides 
form a counter-regulatory pathway of the RAS, which opposes the actions of the classic arm [26]. RAS 
is now well recognized as a dual vasoactive system, acting as a circulating endocrine system and a local 
tissue paracrine system. Contemporary studies continue to expand our knowledge of newer peptides in 
the RAS and the cross-talk between the two major pathways and their receptors [27]. 
 
Classic RAS Pathway 

Prorenin is an inactive precursor of renin and it is produced in multiple tissues (a part of local 
RAS), including juxtaglomerular cells in the kidney, adrenal gland, placenta, uterus, retina, testes, and 
submandibular glands [28]. While prorenin is constitutively secreted in its inactive form, juxtaglomerular 
cells can cause prorenin's proteolytic (by enzymes proconvertase 1 and cathepsin B) or non-proteolytic 
activation to renin. [29,30,31]. Mature renin is then stored and released into the circulation for several 
physiological reasons: changes in renal perfusion, low plasma sodium concentration, increased activity 
of beta1 adrenergic receptors, or negative feedback from Ang I, potassium (increased by hypokalemia 
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and decreased by hyperkalemia). Plasma renin is the rate-limiting enzyme in classical RAS with an 
activity half-life of 10-15 minutes [32]. Angiotensinogen is a precursor molecule (85 amino acid alpha 
2-globulin) primarily synthesized and constitutively secreted by the liver [33]. Renin cleaves the N-
terminal of this polypeptide forming a biologically inert decapeptide Ang I [34]. Angiotensin-converting 
enzyme 1 (ACE1) is an exopeptidase on the plasma membranes of vascular endothelial cells, mainly in 
the pulmonary circulation, as well as in the tissues of the intestinal and urogenital tracts, the heart, adipose 
tissue, and the nervous system [35]. It cleaves the two amino acids from the carboxy-terminal of Ang I 
to make the octapeptide Ang II. 

Ang II is the main mediator of the physiological and pathophysiological effects of the RAS, 
including volume regulation, blood pressure, and aldosterone secretion [36]. It mediates these effects by 
binding with close affinity to type 1 (AT1) and type 2 (AT2) receptors [37]. These receptors have different 
and often opposite responses attributed to cellular signalling pathways: the AT1 receptor stimulates 
protein phosphorylation and the AT2 receptor stimulates dephosphorylation [38]. Physiological 
activation of AT1 receptors results in vasoconstriction, sodium and water reabsorption, and aldosterone 
secretion. Pathological overactivation of AT1-R leads to inflammation, fibrosis, oxidative stress, tissue 
remodelling, and increased blood pressure [39]. Despite the low expression of AT2-R (compared to AT1-
R), it is essential for mediating protective and opposing effects of AT1-R: inhibition of inflammation, 
fibrosis, central sympathetic outflow, vasodilation, natriuresis, and neurodegeneration [38]. 
 
Protective Pathway 

The RAS has a second, protective arm as important as the well-known classical pathway that 
balances the physiological effects of the classical arm. The initiating enzyme of this arm is the 
monocarboxypeptidase angiotensin-converting enzyme type 2 (ACE2) with close structural homology 
to ACE1 [40,41]. Substrates for the enzyme are Ang I and Ang II, but its catalytic efficiency is 300 times 
higher for Ang II than for Ang I [41]. ACE2 is widely expressed in the lungs, cardiovascular system, 
kidneys, adipose tissue, and brain [42]. Membrane-bound levels of ACE2 are regulated by the 
metalloproteinase ADAM17, which cleaves it to create soluble ACE2 [43]. ACE2 converts Ang I to 
angiotensin 1-9 (Ang1-9), which is thought to affect the cardiovascular system through its interaction 
with AT-R, resulting in antihypertrophic, [44], antihypertensive and anti-inflammatory effects [45]. 

The most important active product of ACE2 is perhaps angiotensin 1-7 (Ang 1-7), formed by the 
hydrolysis of the C-terminal phenylalanine of Ang II [46]. Ang 1-7 can also be produced by NEP (neutral 
endopeptidase) activity on Ang I or propyl carboxypeptidase on Ang II [47]. Although the half-life of 
circulating Ang (1-7) is approximately 10 seconds due to rapid metabolism by peptidases such as ACE 1 
and dipeptidyl peptidase 3 [48], it has multiple biological activities opposing Ang II [49]. Binding to its 
G-protein-coupled receptor, Mas-R It induces anti-inflammatory, vasodilatory, antiangiogenic, 
antihypertensive, antifibrotic [50], lipid, and glucose homeostasis-improving effects [51]. Mas-R is 
widely expressed in the brain, testis, heart, kidney, and blood vessels [26]. The Mas G-protein coupled 
receptor member D (MrgD) is the second receptor for Ang (1-7) with an affinity for Ala1-(Ang-(1-7), 
also called alamandin, another peptide member of the protective arm of RAS [52]. MrgD is expressed in 
the central nervous system, heart, kidney, dorsal root and trigeminal ganglia sensory neurons, 
gastrointestinal tract, respiratory tract, and intracellular mechanism of MasR and MegD activation 
increases levels of cyclic adenosine monophosphate (cAMP), phosphokinase A (PKA) and cAMP 
response element phosphorylation (CREB) [53]. Ang (1-7) was found to activate the 
phosphatidylinositol-3-kinase-Akt pathway, and nitric oxide synthase (NOS) in the heart [54]. 
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The existence of an independent brain RAS in which Ang II is produced locally by angiotensinogen 
independently of the systemic RAS was established decades ago. Although the renin was found in 
neurons and astrocytes, local production of Ang II is also regulated by other brain-specific enzymes such 
as chymase and cathepsin G. The brain RAS is represented by the ACE1, Ang II, AT1-R, AT2-R, and 
components for the counterregulatory RAS including ACE2, Ang 1-7, MasR and MgrD [55]. It 
contributes to the brain's control of various physiological processes in the central nervous system (CNS), 
including blood pressure control, water balance, neuroendocrine regulation, stress responses, emotional 
and memory modulation, and pain susceptibility. Dysregulation of brain tissue RAS has been implicated 
in the development of various neurological disorders, including stroke, Alzheimer's disease, and 
Parkinson's disease [56]. Interest in functions of the protective axis RAS increased after the invasion of 
the SARS-CoV2 virus, which was found to bind to the peptidase domain of ACE2 through its spike 
protein receptor-binding domain as part of the viral infection process [57]. 
 
Pain control and RAS 

Recent research data indicates that pathological changes in the expression of RAS components are 
involved in processes of inflammation or neuropathy, conditions associated with changed pain 
interpretation. The RAS has a complex role in tissue-specific nociception, signal transduction, pain 
processing, and interpretation. Ang II may play a dual role depending on its site of action in the existing 
pain processing network. Initial data on the effects of Ang II administered into the brain ventricles 
indicate brief inhibition of the phasic pain response [58]. In addition, the established involvement of brain 
angiotensin receptors in stress-induced analgesia and morphine-induced analgesia suggests an interaction 
with the opioidergic system [58]. Further study revealed that intracerebroventricular infusion of Ang II 
had a longer-lasting antinociceptive effect in a visceral model of nociception and that this effect was 
attenuated by blocking brain AT2 receptors [59]. These findings were later supported by a study on AT2-
deficient mice, which showed a lower pain threshold accompanied by decreased levels of beta-endorphin 
in the brain [60]. Single doses of a selective AT2R agonist provoked short-term antinociception, and 
chronic activation of brain AT2R increased nociception and attenuated the physiological diurnal rhythm 
of phasic nociception [61]. 

Ang II and its specific receptors were shown to participate in the descending pain inhibitory 
network controlled by PAG. The research showed that administering Ang II the PAG can reduce pain 
caused by conditions such as plantar incision-induced allodynia [62]. Microinjection of Ang II into the 
caudal ventrolateral medulla (CVLM) induces hyperalgesia [63], which is not mediated by a direct 
neuronal connection between the CVLM and the spinal cord, but AT1 receptor-positive neurons in 
CVLMs project to the A5 noradrenergic nucleus of the pons, which further activates the neural circuit, 
amplifying the pain signal [64]. Ang II provoked a delayed short-lasting decrease in the mechanic pain 
threshold after intracerebroventricular injection and this effect was not abolished by nonselective 
angiotensin receptor antagonists [65].  

The pronociceptive effect (scratching, licking, biting) of Ang II has been provoked at the spinal 
level by intrathecal administration of the peptide. These octapeptide-induced responses were attenuated 
by local injection of a selective AT1 receptor blocker rather than an AT2 receptor antagonist. Pain-related 
behavior was associated with p38 MAPK activation of spinal AT1 receptor-positive neurons and 
astrocytes. Furthermore, administration of the heptapeptide Ang (1-7) attenuated Ang II-induced 
nociceptive behaviour and inhibited p38 MAPK phosphorylation mediated through Mas1 receptors [66]. 
AT1 receptors have been shown to take a part in the regulation of circadian rhythms of nociception in 
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normotensive and spontaneously hypertensive rats. Chronic AT1 receptor blocking increased the pain 
threshold in normotensive rats only during the resting phase [67]. 

Based on the latest knowledge about the composition and functions of RAS, we note that Ang II 
does not remain in its original form for long but is metabolized to Ang-(1-7), suggesting that Ang-(1-7) 
is the main molecule responsible at least in part for the observed effects. It has been confirmed that the 
dorsal spinal cord expresses all the components required for the construction of both the ACE/Ang II/AT1 
receptor axis and the ACE2/Ang (1–7)/MAS1 receptor axis [68]. 

A recent study provided data on the co-localization of MAS1, NK1, and NMDA receptors in the 
lumbar superficial dorsal horn.  Ang (1–7) administered intrathecally inhibited the nociceptive response 
induced by spinal SP and NMDA. This study evidenced the significant modulation of the ascending 
nociceptive information by spinal MAS1 receptor activation [69]. All the components of the protective 
RAS arm were found in the DRG of the spinal cord. Moreover, the expression of MAS1 receptors in the 
DRG marked a daily increase in rats with a model of neuropathy pain. The neuropathic pain was 
markedly alleviated by the administration of Ang 1-7 [70]. RAS components have been found in the joint 
and bone tissues as well. Ang (1–7) was shown to inhibit cancer-induced bone pain (CIBP) via the MAS1 
receptor without affecting tumor volume or bone metabolism [71]. The peripheral anti-nociceptive effects 
of Ang (1–7) were first demonstrated in rats experiencing PGE2-induced pain [72]. PGE2-induced 
hyperalgesia was subsequently suppressed by intraplanar administration of Ang (1–7) demonstrating its 
analgesic effect directly on nerve endings. This effect was further blocked by the MAS1- antagonist A779 
but was not affected by the opioid receptor antagonist naloxone indicating an opioid-independent 
mechanism. A subsequent study revealed that the anti-nociceptive effect of Ang (1–7) was due to the 
activation of the neuronal nitric oxide synthase/cyclic GMP pathway and ATP-sensitive K+ channels 
locally at the site of administration [73]. 

 
Conclusions 

Accumulating evidence describes the RAS as a homeostasis maintenance system and a complex 
balanced system controlling structural changes in response to environmental and behavioral challenges. 
Changes in the structures and dominance of one of the balancing arms of the RAS in various acute and 
chronic diseases emphasize the importance of this system for the correct understanding of pathological 
processes. The role of the RAS in the brain's pain control networks suggests further studies to uncover 
the importance of angiotensins in developing and treating various types of pain. 
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